Week 3
MATH 33A
TA: Jerry Luo
jerryluo8@math.ucla.edu
Website: math.ucla.edu/~jerryluo8
Office Hours: Thursday 1PM-2PM, MS 2344
SMC hours: Tuesday 1-2PM, MS 3974
1.2.48 Consider the following systems of equation:

$$
\begin{gathered}
y+2 k z=0 \\
x+2 y+6 z=6 \\
x+2 y+(k+2) z=6
\end{gathered}
$$

(a) For which values of k does this system have a unique solution?
(b) When is there no solution?
(c) When are there infinite solutions?
1.3.19 Compute: $\left[\begin{array}{ccc}1 & 1 & -1 \\ -5 & 1 & 1 \\ 1 & -5 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
1.3.25 Let A be a 4×4 matrix and let b and c be two vectors in \mathbb{R}^{4}. We are told that $A x=b$ is inconsistent. What can you say about the number of solutions to $A x=c$?

2-2.10 (Last Week) Let $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & -2 & 4 \\ -5 & 4 & 2\end{array}\right]$ and $b=\left[\begin{array}{c}-2 \\ 4 \\ -14\end{array}\right]$.
Determine if b is a linear combination of a_{1}, a_{2}, a_{3}, the columns of A. If so, determine a nontrivial linear combination.

